Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 35(2): 242-253, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31710167

RESUMO

Fluoride is an environmental contaminant that is ubiquitously present in air, water, and soil. It is commonly added in minute quantity to drinking water, toothpaste, and mouth rinses to prevent tooth decay. Epidemiological findings have demonstrated that exposure to fluoride induced neurodevelopmental toxicity, developmental neurotoxicity, and motor disorders. The neuroprotective effect of clofibrate, a peroxisome proliferator-activated receptor alpha agonist, was investigated in the present study. Forty male Wistar rats were used for this study and randomly grouped into 10 rats per group as control, sodium fluoride (NaF) alone (300 ppm), NaF plus clofibrate (250 mg/kg), and NaF plus lisinopril (10 mg/kg), respectively, for 7 days. NaF was administered in drinking water while clofibrate and lisinopril were administered by oral gavage. Markers of neuronal inflammation and oxidative stress, acetylcholinesterase activity, and neurobehavioral (hanging wire and open field) tests were performed. Immunohistochemistry was performed on brain tissues, and they were probed with glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, and cerebellar Ca2+ -binding protein calbindin-D28k. The results showed that NaF significantly increased of oxidative stress and neuroinflammation and inhibited AChE activity. Immunostaining showed reactive astrocytes, microgliosis, loss of dendritic spines, and arborization in Purkinje cells in rats administered only NaF. Neurobehavioral results showed that cotreatment of NaF with clofibrate improved muscular strength and locomotion, reduced anxiety, and significantly reduced astrocytic count. Overall, cotreatment of NaF with either clofibrate or lisinopril showed neuroprotective effects by mitigating neuronal inflammation and oxidative and motor incoordination. Hence, clofibrate could be seen as a novel drug candidate against neurodegeneration and motor disorders.


Assuntos
Ataxia/prevenção & controle , Calbindinas/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/metabolismo , Clofibrato/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/agonistas , Fluoreto de Sódio/toxicidade , Animais , Ataxia/imunologia , Biomarcadores/metabolismo , Fluoretos/farmacologia , Inflamação , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
2.
Environ Toxicol Pharmacol ; 37(3): 1202-11, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24814264

RESUMO

Lead acetate (PbA) is one of the major environmental contaminants with grave toxicological consequences both in the developing and developed countries. The liver and erythrocyte antioxidant status and markers of oxidative were assessed. Exposure of rats to PbA led to significant decline (p < 0.05) in hepatic and erythrocyte glutathione peroxidase (GPx), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), and reduced glutathione (GSH) content. Similarly, malondialdehyde (MDA) and H(2)O(2) concentrations were significantly (p < 0.05) elevated. Histopathology and immunohistology of liver of rats exposed to PbA showed focal areas of necrosis and COX-2 expression after 6 weeks of PbA withdrawal. Taken together, hepatic and erythrocytes antioxidant defence system failed to recover after withdrawal of the exposed PbA for the period of the study. In conclusion, experimental animals exposed to PbA did not recover from hepatotoxicity and disruption of erythrocyte antioxidant defence system via free radical generation and oxidative stress.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Poluentes Ambientais/toxicidade , Eritrócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Compostos Organometálicos/toxicidade , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ciclo-Oxigenase 2/metabolismo , Eritrócitos/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Hematócrito , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Wistar , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...